Stemming Turkish Words Using Snowball

Evren (Kapusuz) Çilden
 (Dec 21, 2006)

This paper presents my studies on developing a Turkish analyzer for Lucene information retrieval system. Because of the agglutinative nature of language, stemming is an essential task for indexing and searching documents in Turkish. I used Snowball language for developing a stemmer for Turkish words. While developing the Snowball algorithm, I used a general stemming methodology that is applicable to every language even the ones having a complex morphological structure provided that the morphological structure can be expressed in clear rules. This paper mainly focuses on this stemming methodology.

1. Stemming Methodology

A right-to-left affix stripping method is used for stemming Turkish words. There are two main reasons for preferring such an approach:

· You do not have to provide a dictionary of stems

· It has better time performance compared to a method that searches a dictionary of stems.

In the implementation of the right-to-left affix stripping method, I used Snowball language. Snowball is a string processing language that is specifically designed for stemming purposes[1]. Snowball has been widely used in stemming tools. Stemming algorithms for various languages like English and German has been developed using Snowball[1]. When someone decides to perform stemming using Snowball, the stemming rules are defined in Snowball language (usually in a file with extension .sbl). Then the Snowball program is compiled into Java or ANSI C code using the appropriate compiler for Snowball. This section describes the Snowball program implemented for Turkish stemming (Turkish.sbl).

A summary of morphological structure of Turkish words is given in the following section.

1.1. Morphological Structure of Turkish Words

Turkish, being an agglutinative language, has a rich morphological structure. Words are usually composed of a stem and of at least two or three affixes appended to it. This is why it is usually harder to analyze a Turkish text. Stemming is a more essential task for indexing and information retriaval purposes in agglutinative languages. Current study aims at developing a stemming program for indexing and searching documents in Turkish. For this reason, it focuses on finding noun stems in texts and it does not analyze derivational noun suffixes or verb suffixes.

We can analyze noun suffxes in Turkish in two groups. Noun suffixes (eg. “doktor-um” meaning ‘my doctor’) and nominal verb suffixes (eg. “doktor-dur” meaning ‘is a doctor’). The words ending with nominal verb suffixes can be used as verbs in sentences. There are over thirty different suffixes classified in these two general groups of suffixes. The stemming algorithm covers only these suffixes that are appended to noun stems, since finding noun stems is essential for our information retrieval purposes.

In Turkish, the suffixes are affixed to the stem according to definite ordering rules. The agglutinative and rule-based nature of word formations in Turkish allows modelling of the morphological structure of language in Finite State Machines (FSMs) [2]. In Figures 1 and 2, there is a list of noun suffixes and a finite state machine expressing the ordering rules of these suffixes
. The start state of the FSM is indicated by a ‘>’ sign. The double circles on nodes represent the accept states of the FSM. A number on an arc indicates which suffix on the corresponding suffix list causes a state transition. If there are multiple numbers on an arc, all of the suffixes labeled by those numbers can cause that state transition. While traversing the FSM by consuming suffixes in each transition, reaching to an accept state means that a possible stem is reached.

For example according to the FSM shown in Figure 2, “evimden” (from my house) is a valid Turkish word with stem ‘ev’ (house) and morphological structure ev-(U)m-DAn
. In a right-to-left analysis, as the final matching suffix of the word –DAn (no 15) is consumed, state G is reached. Following the transition labeled as 2 by consuming –(U)m, we reach to the accept state labeled H. The only outgoing transition from state H is labeled –lAr (no 1), and since after consuming –(U)m, the rest of the word does not match with that suffix, the FSM detects “ev” as a possible stem of the word “evimden”.

As an example to a morphological analysis of an invalid Turkish word, consider “evdeden”. Assuming that the word has the stem “ev”, the word would have a morphological structure ev-DA-DAn. However, in Turkish, -DAn suffix cannot be affixed to a –DA suffix, and thus the whole word is invalid. In a right-to-left analysis, when the final suffix of the word –DAn (no 15) is consumed, a state transition from the start state of the machine to the accept state G occurs. But there is no transition labeled as 13 (representing the suffix –DA) that starts from state G. At the end of the FSM analysis “evde” is accepted as a possible stem since the last accept state is reached after consuming –DAn. In this example, it is impossible to reach to an accept state until the real stem “ev” is reached.

[image: image1.png]-lAr
“Om
~OmUz
“On
~OpnUz
-Ou
Ere;
s
-0
—@)Un

1

13
14
15
16
17
18
19

Figure 1.Noun suffixes in Turkish [2]

[image: image2.png]

Figure 2. Right-to-left FSM for noun suffixes [2]

In Figures 3 and 4, there is a list of nominal verb suffixes and a finite state machine that represents the ordering rules of these suffixes
 [2].

[image: image3.png]—(y)Um
—sUn
-z
—sUnUz
_lAr

-
-

—aUz
_DUr

1
12
13
14

15

Figure 3. Nominal verb suffixes in Turkish [2]

[image: image4.png]

Figure 4. Right-to-left FSM for nominal verb suffixes [2]

“doktormuşsunuz” (you had been a doctor) is an example to a possible Turkish word generated by using nominal verb suffixes (doctor-(y)mUş-sUnUz). “doktor” is a possible stem of this word according to the nominal verb suffix affixing rules modeled in the FSM in Figure 4. In a right-to-left analysis, we start from the state A and reach to state B by consuming –sUnUz. Starting from state B and consuming –(y)mUş suffix by the transition labeled as 14, we reach to the accept state F. Since there are no outgoing transitions from state F, the FSM accepts “doctor” as the stem of the word.

1.2. Translating FSMs into Snowball Expressions

This section of the paper describes the method I developed for deriving valid Snowball expressions from right-to-left finite state machines that model the morphological structure of a language. For the rest of this paper, the reader is expected to have a detailed knowledge about Snowball language syntax and semantics. The reader is encouraged to read Snowball manual [3] for the rest of the paper.

The method described below is applicable to all agglutinative languages whose morphological rules of language are clear and can be represented as right-to-left finite state machines. The steps taken for developing a stemmer in Snowball are given below:

1. Determine the main suffix types of the language.

2. Define a right-to-left FSM for each suffix type determined in step 1 (for a detailed description of how these FSM’s are defined, please refer to [2]).

3. Define stem markers: Define a Snowball routine for each suffix that the stemmer will detect and stem. While defining such routines also consider different forms that a suffix can take, consonent or vowel insertions between stem and suffix, or other cases specific to the language.

4. Define FSM routines: Define a Snowball routine for each suffix type determined in step 2 by mapping the FSM description into Snowball expressions. Shortly, in the routine, call the routines written in step 3 in the order defined by FSM rules to mark valid suffix chains. And after marking a valid suffix chain, simply stem it. A detailed description about how an FSM structure can be mapped into valid Snowball expressions for stemming is given in the rest of this section.

5. Define the main stemmer routine: Make an analysis about the order of affixing of different suffix types in language. Define the main stemmer routine by calling the routines defined in step 4 in the correct order.
As mentioned in the previous section, main suffix types for our stemming purposes were determined as noun suffixes and nominal verb suffixes. The right-to-left FSMs for these suffix types were summarized in the previous section. This section describes what has been done in steps 3, 4 and 5.

Defining stem markers:

A snowball routine is defined for marking each different suffix in language (the ones listed in Figures 1 and 3). These routines are defined in backward mode, and they search for a matching suffix at the end of the word. For example below is the Snowball routine defined to mark “–ki” suffix in Turkish. This routine simply moves cursor to the starting point of the suffix, if a matching substring is found at the end of the word.

define mark_ki as (

'ki'

)

As an example to a more complicated case, the routine defined for suffix –DAn is given below. In Turkish, a suffix can have multiple forms depending on the last vowel and the last consonant of the stem. For instance the word “kekten” (from the cake) is composed of the stem “kek” (cake) and the suffix –DAn. The suffix took the form “-ten” because of consonant and vowel harmony rules. In the routine below, all different forms that –DAn suffix can take are matched by the “among” keyword.

define mark_DAn as (

check_vowel_harmony

among('dan' 'den' 'tan' 'ten')

)

In the example above, the routine check_vowel_harmony is called to prevent some over-stemmings. This routine checks whether the last two vowels of the word obey vowel harmony rules. A berief description of Turkish vowel harmony follows.

Turkish vowel harmony is a two dimensional vowel harmony system, where vowels are characterised by two features named frontness and roundness. There are vowel harmony rules for each feature.

a. Vowel harmony rule for frontness: Vowels in Turkish are grouped into two according to where they are produced. Front produced vowels are formed at the front of the mouth (‘e’, ‘i’, ‘ö’, ‘ü’) and back produced vowels are produced nearer to throat (‘a’, ‘ı’, ‘o’, ‘u’). According to the vowel harmony rule, words cannot contain both front and back vowels. This is one of the reasons why suffixes containing vowels can take different forms to obey vowel harmony.
b. Vowel harmony rule for roundness: Vowels in Turkish are grouped into two according to whether lips are rounded while producing it. ‘o’, ‘ö’, ‘u’ and ‘ü’ are rounded vowels whereas ‘a’, ‘e’, ‘ı’ and ‘i’ are unrounded. According to the vowel harmony rules, if the vowel of a syllable is unrounded, the following vowel is unrounded as well. If the vowel of a syllable is rounded, the following vowels are ‘a’, ‘e’, ‘u’ or ‘ü’.
Usually, Turkish suffixes obey vowel harmony rules. Some exceptional cases to vowel harmony are, compound words, some suffixes like “-ki”, and words originating from other languages. Especially for the last case, over-stemming can occur frequently if vowel harmony is not checked prior to the stemming decision. Some words can end with syllables similar to a suffix as in the word “kürdan” (toothpick). The word can be over-stemmed to the stem “kür” if the stemming algorithm does not take vowel harmony rules into account. If the stem was really “kür” and a –DAn suffix was appended to it, the final form of the word would be “kürden” according to vowel harmony rules. This is why check_vowel_harmony routine is used for every suffix obeying these rules. If the candidate suffix does not obey vowel harmony, stem marker (cursor) is not advanced, and thus over-stemming is prevented. In the routine for marking “–ki” suffixes, check_vowel_harmony routine is not called because “-ki” suffix is an exceptional case.

In the implementation of the check_vowel_harmony routine, simply vowels are grouped into 6 classes based on which vowels can precede them, and a check is performed whether the vowel coming before a vowel is in an acceptable group. Vowel group declarations and the routine definition are given below. The routine is defined in the backwards mode.

// the vowel grouping definitions below are used for checking vowel harmony

define vowel1
'a{i'}ou'
// vowels that can end with suffixes containing 'a'

define vowel2
'ei{o"}{u"}'// vowels that can end with suffixes containing 'e'

define vowel3
'a{i'}'
// vowels that can end with suffixes containing 'i''

define vowel4
'ei'

// vowels that can end with suffixes containing 'i'
define vowel5
'ou'
 // vowels that can end with suffixes containing 'o' or 'u'

define vowel6
'{o"}{u"}'//vowels that can end with suffixes containing 'o"' or 'u"'

define check_vowel_harmony as (

test

(

(goto vowel) // if there is a vowel

(

('a' goto vowel1) or

('e' goto vowel2) or

('{i'}' goto vowel3) or

('i' goto vowel4) or

('o' goto vowel5) or

('{o"}' goto vowel6) or

('u' goto vowel5) or

('{u"}' goto vowel6)

)

)

)

Another interesting case in detecting suffixes in Turkish is that, for some suffixes, if the word ends with a vowel, a consonant is inserted between the rest of the word and the suffix. These merging consonants can be ‘y’, ‘n’ or ‘s’. When a merging consonant can be inserted before the suffix, the representation of the suffix starts with the optional consonant surrounded by paranthesis (eg. –(y)Um, -(n)cA). For these kinds of suffixes, if existence of a merging consonant is considered, the candidate stem is checked whether it ends with a vowel. Below is the routine for marking –(y)Um suffix. The call to the routine named “mark_suffix_with_optional_y_consonant” is for checking whether “y” is a possible part of the stem or it is merely a merging consonant to strip off.

define mark_yUm as (

check_vowel_harmony

among ('{i'}m' 'im' 'um' '{u"}m')

(mark_suffix_with_optional_y_consonant)

)

The “mark_suffix_with_ optional_y_consonant” routine is presented below.

define mark_suffix_with_optional_y_consonant as (

((test 'y') next (test vowel))

or

((not(test 'y')) test(next (test vowel)))

)

According to the routine above, if there is no ‘y’ consonant before the suffix, only the real part of the suffix (eg. -Um) is marked for stemming. If there is a ‘y’ consonant and it is preceded by a vowel, ‘y’ is treated as a merging consonant and both ‘y’ and the candidate suffix (eg. -Um) is marked for stemming. If there is a consonant just before ‘y’, the decision is that the consonant ‘y’ and the candidate suffix are really a part of the stem. In such a case, cursor is not advanced to prevent over-stemming. The last case can occur especially when the stem originates from another language like in “lityum” (meaning the element Lithium). If the check for vowel harmony was not made, the word would be stemmed to “lit”, for “–(y)Um” would be treated as a suffix affixed to it. But according to morphological rules of Turkish, the final word would be “litim”, not “lityum” if “lit” were really the stem of the word and the suffix “–(y)Um” were affixed to it. So detecting “lit” as the stem of the word would be an over-stemming. The use of routines like mark_suffix_with_optional_y_consonant prevents these kinds of over-stemmings.

Similar to merging consonants, there are merging vowels for some suffixes starting with consonants. They can be preceded by merging vowels like in “-(U)mUz” suffix when they are affixed to a stem ending with a consonant. In such a case, a U vowel (‘ı’, ‘i’, ‘u’ or ‘ü’ depending on vowel harmony) is inserted between the stem and real suffix (e.g. “-mUz”) for ease of pronunciation. The routine named “mark_suffix_with_optional_U_vowel” is defined for these kinds of cases. The definition of this routine is very similar to “mark_suffix_with_optional_y_consonant” and prevents some over-stemmings.
Defining routines for right-to-left FSMs

Since Snowball language is specifically designed for searching and manipulating substrings, mapping morphological rules described as FSMs into Snowball expressions is relatively easy and straight-forward.

Routines are defined in backward processing mode, since rules described in FSM are for right-to-left processing. The transitions in the FSM represent a possible removal of a suffix. The numbers on the transitions indicate which suffixes can be removed by that transition. When translating into Snowball expressions, those suffixes are searched, and if found (if the transition can occur), the cursor is moved right-to-left to mark the end of the candidate stem.

Assuming that there is a Snowball routine for matching each suffix, the Snowball expression corresponding to a single transition in the FSM is just a call to the routine for the suffix that causes the transition. If there are multiple suffixes that can initiate the transition (if the transition is labeled by multiple numbers), a Snowball expression is formed simply by joining the routine calls corresponding to the suffixes by an “or”.

For simple paths (transitional chains) without alternatives, an expression is formed for each transition on the path, and the expressions are simply sequenced and grouped into paranthesis. If there are alternatives, for each alternate path, the corresponding expressions are joined with an “or”.

For each path starting from the beginning state of the FSM and ending at an accept state of the FSM, a snowball expression is formed as described above, and these expressions are merged by an “or”. The begining and end of the candidate suffixdes to delete are marked by [and] slicing commands, respectively. And a delete operation is performed to complete stemming suffixes.

The Snowball routine defined for the FSM shown in Figure 4 is given below.

define stem_nominal_verb_suffixes as (

[

set continue_stemming_noun_suffixes

(mark_ymUs_ or mark_yDU or mark_ysA or mark_yken)

or

(mark_cAsInA (mark_sUnUz or mark_lAr or mark_yUm or mark_sUn or mark_yUz or true) mark_ymUs_)

or

(

mark_lAr] delete try([(mark_DUr or mark_yDU or mark_ysA or mark_ymUs_))

unset continue_stemming_noun_suffixes

)

or

(mark_nUz (mark_yDU or mark_ysA))

or

((mark_sUnUz or mark_yUz or mark_sUn or mark_yUm)] delete try([mark_ymUs_))

or

(mark_DUr] delete try([(mark_sUnUz or mark_lAr or mark_yUm or mark_sUn or mark_yUz or true) mark_ymUs_))

]delete

)

For the FSM given in Figure 4, A is the start state, and B, C, E and F are the accept states. Since F is the only accept state with no outgoing transitions, all possible paths starting from state A and ending at state F are listed. For each such path (there are six of them, since there are six outgoing transitions from state A), a Snowball expression is formed as described above. If the path contains other accept states in between state A and state F, a delete operation is performed after each accept state, and the rest of the path is tested for a match by a “try” operation. The six expressions corresponding to six paths starting from A to F appear in bold face in the Snowball routine.

Defining the main stemmer routine:

Assuming that the two Snowball routines are defined for two main groups of suffixes (namely nominal verb suffixes and noun suffixes) as explained in the previous section, defining the main stemmer routine is simple. The main stemmer routine is shown below.

define stem as (

(more_than_one_syllable_word)

(

backwards (

do stem_nominal_verb_suffixes

continue_stemming_noun_suffixes

do stem_noun_suffixes

)

postlude

)

)

First of all, the stemmer checks whether the word has multiple syllables (just by counting the number of vowels in the word). It goes on stemming only if the word has multiple syllables (in Turkish, single syllable words are mostly the stem itself).

According to morphological analysis given in reference [2] , if a word has nominal verb suffixes, they always appear at the end of the word. They follow noun suffixes or the stem itself at the absence of noun suffixes. With the help of a “do” test, first the nominal verb suffixes are stemmed if they exist, and then noun suffixes are stemmed if they exist. “continue_stmeming_noun_suffixes” is just a boolean set at the routine “stem_nominal_verb_suffixes” and allows a finer control of the program flow. Unfortunately, in Turkish, “-lAr” suffix can be used both as a nominal verb suffix (third person plural present tense) and as a noun suffix (plural inflection). The boolean is used just for handling this coincidence.

Finally, the main stemmer routine calls the “postlude” routine. The postlude routine makes some post processings about last consonants. In Turkish, words does not end with consonants ‘b’, ‘c’, ‘d’, and ‘ğ’. However, when a suffix starting with a vowel is affixed to a word ending with ‘p’, ‘ç’, ‘t’ or ‘k’, the last consonant is transformed into ‘b’, ‘c’, ‘d’, or ‘ğ’ respectively. The postlude routine transforms last consonants ‘b’, ‘c’, ‘d’, or ‘ğ’ back to ‘p’, ‘ç’, ‘t’ or ‘k’, respectively, after stemming is complete.

2. Integration of Turkish Stemmer with Lucene

Lucene is an advanced information retrieval tool that can be used for full text search and indexing [4]. This section briefly describes how Turkish stemmer is integrated with Lucene information retrieval system for indexing and searching Turkish documents.

Snowball program was developed as described in the previous section and it was compiled into Java code named “TurkishStemmer.java”. The public “stem” method of “TurkishStemmer” class returns the stem of a given Turkish word. Other classes implemented for developing a Turkish analyzer for Lucene are “TurkishStemFilter” and “TurkishAnalyzer”.

 “TurkishStemFilter” class extends the standard “TokenFilter” class of Lucene. The class has a member called “stemmer”, which is an instance of the “TurkishStemmer” class generated from the Snowball program. In the overriden method of the “TurkishStemFilter” class named “next”, the “stem” method of the stemmer object is called for finding stems of given tokens.

“TurkishAnalyzer” class analyzes Turkish text streams into tokens for indexing Turkish documents. It extends the standard “Analyzer” class of Lucene. In its “tokenStream” method, it uses a “TurkishStemFilter” object for finding stems of Turkish tokens. It also makes a stop word analysis and filters common Turkish stop words like “o” (she/he) or “ama” (but). The stop word analysis is carried out twice before and after Turkish stemmer analysis. This is because stop words can also be inflected in Turkish. For instance the word “onun” (o-(n)Un meaning “of him”) has the stop word “o” as stem. These kinds of words occasionally occur in Turkish texts. For this reason tokens may include some stop words after stemming analysis. These can be eliminated by a post stop word analysis.

Below is the “tokenStream” method of “TurkishAnalyzer” class.

public TokenStream tokenStream(String fieldName, Reader reader) {

 TokenStream result = new StandardTokenizer(reader);

 result = new StandardFilter(result);

 result = new LowerCaseFilter(result);

 result = new StopFilter(result, stopSet);

 result = new TurkishStemFilter(result, exclusionSet);

 // refilter stop words after stemming too

 // because in Turkish some stop words are also inflected

 result = new StopFilter(result, stopSet);

 return result;
}

3. Results

Turkish stemmer presented in this paper can stem complex Turkish words such as the ones given in the table below:

	Word
	Morphological Analysis
	Meaning
	Stem

	Kalelerimizdekilerden
	Kale-lAr-UmUz-DA-ki-lAr-DAn
	From the ones at one of our castles
	Kale

	Çocuğuymuşumcasına
	Çocuk-(s)U-(y)mUş-(y)Um-cAsInA
	As if I were her child
	Çocuk

	Kedileriyle
	Kedi-lAr-(s)U-(y)lA
	With their cats
	Kedi

	Çocuklarımmış
	çocuk-lAr-(U)m-(y)mUş
	Someone told me that they were my children
	Çocuk

	Kitabımızdı
	kitap-UmUz-(y)DU
	It was our book
	Kitap

Table 1. Some of successful stemming results

The results in Table 2 show that Lucene indexes generated from Turkish documents by using the Turkish analyzer presented in this paper are about 20% smaller than the indexes generated by using Lucene’s standard analyzer.

	Number of Docs
	Total Size of Docs (MB)
	Turkish Analyzer Index Size (KB)
	Standard Analyzer Index Size (KB)

	2
	1.29
	16.70
	22.5

	7
	1.78
	38.20
	53.1

	12
	2.11
	49.20
	66.9

	17
	2.35
	64.90
	88.2

	23
	6.31
	152.00
	199

	25
	7.06
	182.00
	237

	32
	8.21
	223.00
	294

	64
	13.90
	584.00
	761

	86
	19.70
	723.00
	947

Table 2. Turkish Analyzer generated index sizes vs. Standard Analyzer generated index sizes

4. Conclusions and Future Work

This study presents a methodology about how Snowball programs can be developed for languages having clear morphological structures. If morphological rules of the language can be expressed in right-to-left finite state machines, then by the method presented in this paper, development of the Snowball program out of those FSMs is a straightforward task. Even the generation of the Snowball program can be automatized. As a future work, a virtual editor can be developed for generating stemmers in Snowball language. After analyzing the morphological structure of the language in question, the user can draw FSMs from a virtual editor, and the editor can automatically generate its implementation in Snowball, or its code in Java or ANSI C with the help of the Snowball compiler.

As mentioned before, Turkish stemmer described in this study stems only noun and nominal verb suffixes. The stemmer can be enhanced to stem all kinds of verb suffixes. In Turkish, there are over fifty suffixes that can be affixed to verbs [2]. The morphological structure of verb suffixes is more complicated than noun suffixes. Despite this, one can use the methodology presented in this paper to enhance the stemmer to find stems of all kinds of Turkish words. As mentioned earlier, finding stems of nouns and nominal verbs is sufficient for our purposes.

5. References

[1] M.F. Porter, Snowball: A Language for Stemming Algortihms, http://www.snowball.tartarus.org/texts/introduction.html, 2001

[2] G. Eryiğit & E. Adalı, An Affix Stripping Morphological Analyzer for Turkish, Proceedings of the IASTED International Conference ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2004, Innsbruck, Austria.

[3] Snowball Manual, http://www.snowball.tartarus.org/compiler/snowman.html
[4] O. Gospodnetic, E. Hatcher, Lucene In Action, 2005.

� Evren (Kapusuz) Çilden is currently a research and development engineer at C/S Enformatik Teknolojileri (� HYPERLINK "http://cs.com.tr" ��http://cs.com.tr�). Email: evren.kapusuz@gmail.com

� The figures are taken from Eryiğit and Adalı’s study [2].

� Capital letters in suffix representations indicate that the suffix can take different forms (i.e. has allomorphs). For instance, -DAn suffix has four allomporhs (‘dan’, ‘den’, ‘tan’, ‘ten’).

� The figures are taken from Eryiğit and Adalı’s study [2].

